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Abstract. We study the kinetic equation which descnbes the evolution of cluster-size distribution 
of the aggregation-fragmentation problem, the so-called generalized Smoluchowski equation for 
several dynamics of cluster growth. By using the method of the generating function we find 
analytical solutions for some cases. Besides. numerical solutions are found for the time evolution 
of clusten where the aggregation and frapmentation kernels do uot allow a complete analytical 
solution. 

1. Introduction 
Colloidal science is a very important area of research both theoretically and experimentally. 
It concerns systems within dimensions of nanometres m) to micrometres m). 
Examples of systems which are colloidal are aerosols, cements, cosmetics, emulsions, foams, 
paints, and plastics, and processes which rely on the applications of properties of colloidal 
systems are, for example, adhesion, detergency, grinding, emulsion polymerization, etc [I] .  
Because of their small size, colloidal particles undergo Brownian motion just as molecules 
do. This results in collisions between particles in colloidal suspensions. The stability of col- 
loidal dispersions depends on whether such collisions lead to aggregation. For example, for 
a lyophobic colloid, there is always an attractive (van der Waals) force between the particles 
and if they get close enough this force will dominate so that the particles become linked 
together. The system appears to be stable for some time only if some other force is able to re- 
duce the approaching of other particles in the course of their Brownian motion. They are still 
thennodnamically unstable, however, and the barrier to coagulation is merely a kinetic one. 

The classical understanding of coagulation was given by Smoluchowski at the beginning 
of this century [2]. He made the assumption that collisions are binary and fluctuations in  
density are small in order that collisions occur at random. The case of coagulation with 
fragmentation has been studied less. This case is important because many real systems 
involve both processes occuning simultaneously to lead to an equilibrium. The modelling 
of systems with this process arise not only in colloidal science but in a wide variety of 
situations, examples include astrophysics, atmospheric physics, biology, polymer science, 
etc. The approaches to solving the kinetic equation associated with this last problem have 
been scaling and numerical simulations [3-6]. To our knowledge, there are few exact results 
[7-141. For a recent theoretical and experimental review see [15,16]. 

In this paper we discuss some models for the dynamics of cluster growth. We solve 
the generalized Smoluchowski rate equation for different combinations of fragmentation 
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and aggregation kernels, constant and/or additive, by using the method of the generating 
function. A constant kernel means that the rates of aggregation or fragmentation do not 
depend on the size of the clusters. This is the simplest and most studied case. Constant 
aggregation rates occur, for example, for linear polymers which can only react at their 
extremities. In the case of aggregates which can react at all, or a number of sites, their 
aggregation rates will increase with the size of the reactants, and in the simpliest model 
they can be assumed to be roughly additive. This assumption is relevant if two linear rods 
or respective lengths p and q ,  can stick with equal probability when the extremity of one of 
them touches any site on the other: then the aggregation rate should be proportional to p + q .  

If the clusters reorganize as soon as they are formed to adopt a given form, for example 
spherical, the collision cross section of two clusters of sizes p and q is likely to be 
- ( p y  + qy), d being the dimension of the space. However, we will not consider 
this case here, but only the limiting constant and additive cases. 

As for fragmentation, a constant fragmentation rate is relevant for linear polymers which 
can be fragmented if a solvent molecule breaks any of its bonds with equal probability. The 
same assumption holds if a nonlinear cluster can be dissociated under the action of an 
external agent with any of its p elementary units, to give any of the p - 1 possible pairs 
X , ,  X ,  with q + r  = p .  However, if the fragmentation of an aggregate is due to, or enhanced 
by, some internal instability, the total probability of fragmentation can increase nonlinearly 
with the size p of the cluster; if, for instance, it is assumed to be roughly proportional to 
the number p ( p  - 1 ) / 2  of existing interactions, each possible fragmentation occurs with a 
probaility proportional to p .  

Obviously these models are rather crude, and realistic treatments should be adapted 
to specific cases. Here we just study some simple examples which can be reasonable 
approximations of actual phenomena, and permit us to obtain analytical results. We solve 
the equations numerically and the results are compared with the analytical ones. 

2. Analytical results 

The process of aggregation-fragmentation can be schematically represented by 
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where X p  represents both a cluster or polymer containing p elementary units or p- 
mers and the concentration at time f. Kij and I?;) are the forward and reverse 
rate coefficients representing the aggregation and fragmentation rates, respectively, 
also called kernels. The kinetic equation which describes the evolution of the 
cluster size distribution, the so-called generalized Smoluchoswki equation [3-81, is 

with p = 1 . 2 ,  . . . , m and where [ p / 2 ]  denotes the greater integer less or equal to p / 2 .  
In equation (2 )  the first and third terms represent the rate of change of the p-cluster due 



Aggregation-fragmentation kinetics 2983 

to the coalescence of smaller clusters and its breakup into smaller ones. The other terms 
represent the change of rate due to the coalescence of the p-cluster with others and the 
breakup of larger cluster into p-clusters. This is a mean-field rate equation and neglects 
spatial fluctuations in cluster density. For information about this, see [17,18]. In general, 
it is not possible to solve this equation but for very special situations. In the following we 
discuss some examples where analytical results can be found. 

2.1. Example A 

The size of the clusters is not limited (m = 00) and the reaction rates are constant [7,12, 131. 
Let 

and 

RP.9 = 2 i  P f 4  - - 
K p , p  = k . 

In this case equation (2)  becomes 

Let 

m 

F(t.  z) = Xpzp-' 
- p=l 

be the generating function for the X,. For simplicity in the following the dependence of F 
on t and z will be dropped. By multiplying each side of (3) by zp-l and summing over k 
we obtain the evolution equation for F :  

aF - aF -F-FI  - = k(zF2 - 2F1 F )  - kZ- + 2k- 
at  az 2 - 1  

where 

FI F(z = I ) =  E X p .  
P 

(4) 

This example has been studied extensively, and it can be solved completely [13]. 
Here we only recall two interesting properties: there is an equilibrium stationary solution 
satisfying the detailed balance, and there is a particular time-dependent solution where each 
elementary reaction (1) has the same time-dependent chemical affinity. 
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2.1.1. Particular solution. A particular solution for (3) has the form 
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x, = ?(I - v y - 1  ( 5 )  

pX, = y ,  is constant and normalized to 1 where the total concentration of monomers, 
(Y = 1). 

Indeed, in this case 

Fi = v 
U2 

1 - (1 - u)z  
F =  

and (4) is verified if v satisfies 

the solution of which is 

a + bced6' 
1 -tea U =  

where a ,  b ,  c and 6 are easily expresscd as functions of k and E .  
It is clear that the solution considered is only valid for certain initial conditions which 

are determined by satisfying (6). They include the important case where only monomers 
are initially present, i.e. v(0) = 1 and in this case the constants are 

i+4- 
2k 

b =  -,& + 4- 
2.k 

a =  

It should be noticed that each one of reactions (1) has the same affinity, since 

- 
1 - v i  kXP+, = _._ kXpX, U2 k '  

When t + CO, v + a, and the asymptotic value reached by the aggregate of p-mers is 

x, -b a71 -ay- '  (7) 

and the detailed balance condition 

kX,X, = dX,+, 

is satisfied. 
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2.1.2. Sfarionury sohrion. In this case it is easily verified that an equilibrium stationary 
solution, where every reaction (1) is equilibrated, exists: 

k X ; X t  = f X ; + 9  (8) 

where X i  is the concentration of molecules of the p-mer at equilibrium. Considering q = 1 
and by an inductive argument we get 

= aP(x;)’ (9 )  

where 

This stationary state is stable and unique, as can be seen from the decreasing function 

which is positive if Xi = 0 and negative if X ;  3 ca. Thus there exists an equilibrium 
unique point, defined by the total concentration of monomers y .  and k l f ,  where the function 
f (X;) vanishes. 

2.2. Example B 

The size of the clusters is not limited (m = w) and additive coagulation and constant 
fragmentation kemels are considered. 

These kernels are defined by 

Kjj = k ( i  + j )  E . .  ‘I - - f . 

As was mentioned before, the additive form arises if we assume that binary interactions of 
clusters occur randomly with a rate proportional to the total surface area of the clusters. In 
this case the evolution equation is 

Let us consider 

@ ( t ,  o) = C e m p X p  
P 

which is related to F by 

@(t ,  Inr) = z F ( f ,  z )  

By multiplying each side of (10) by emp and summing over p we obtain the equation for 4: 

(e-? - @o) (12) - = k(@’)‘ - 2k(@’@o t @@A) - f (@’ - $1 + - at  1 -e-O 

where @‘ = 2 and O0 = @ ( t ,  o = 0) 

2.i a@ 
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2.2.1. Total concenrration ofpanicles. The total concentration of particles is 

which satisfies the equation 

_ = -  ’” 2k$o$A - E(& - $6). 
at 

Noting that the total concentration of monomer units is conserved: 

$6 = C px, = constant = y 
P 

equation (14) transforms into 

whose solution for the initial condition XI = y at t = 0 (only monomers present) is 

From this equation it is seen that the total number of particles decays exponentially and the 
asymptotic value is 

Then the average of polymers is 

As t + 03, (p) increases from 1 to 

2.2.2. Solution. It is remarkable that the hierarchy (IO) can be solved exactly, although we 
are not able to find a general analytical expression for this solution. As a matter of fact, 
because of (13) and (15). equation (10) can be written as 

Thus, the last term in the right-hand side of (21) only contains the functions X ,  for 
4 c p ,  and the known function $0: equation (21) is a linear, non-homogeneous first-order 
equation in X,, and the hierarchy can easily be solved at all successive orders. 



Aggregation-fragmen ration kinetics 

At first order we have 

_ = -  d X 1  X , [ Z k ( y  +CO) + 2BI+ 2i40 
dt 

with the following solution, if Xl(0) = y :  

+ l r 2 k @ o ( t ' )  exp(- k' [2k (y  + 40) + 61 dt" dt' 1 
This can also be written 

* dt' 
B 

with 

S(f)  = exp(- /"' [2k (y  + k) + 2kldt' 
0 

When t --f 03, 

with 

and it is found that . 

- 6 B (2kY)ze-a,+, XI = -ky + -(Y + -)- a A  a A  k A - a  

2987 

(22) 

with 

a = 2 k y  + k .  (28) 

Obviously the asymptotic values of X I ,  X Z ,  . . . can be obtained successively from (21). It 
has to be noted that in this case the detailed balance condition is not satisfied. 

2.3. Example C 

The size of the clusters is not limited (m = 00) and additive coagulation and size-dependent 
fragmentation kemels are considered. 

These kernels are defined by 

~ i j  = k ( i  i- j )  Eij = X(i + j ) .  
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In this case the evolution equation is 

Let us consider again the function @(t, o) given by ( I  I). In this case the equation for @ is 

(e-"@ - C) (30) at 1 - e-" 

where as before the prime indicates the derivative with respect to o and, & = Q(r. o = 0) 

21 a@ - = k(@*)' - 2k(@'@o + @@;) - i(@" - @') + - 

Then, the equation for GO, which is the total number of particles, is 

or, using the conservation of mass 

(32)  
a h  
at - = -2ky@o - + .&&. 

A solution cannot be found for @ d t )  unless @: is given. 
Thus it is generally impossible to solve the hierarchy of equations (29) in a closed form, 

except i f  a truncation is adopted, for instance by assuming that there is a maximum size for 
the aggregates. 

2.3.1. Equilibrium. It should be pointed out that an equilibrium stationmy solution, with 
detailed balance for all equation (l), again exists. 

As a matter of fact this condition now reads 

k ( p  + q ) X ; X ;  = .&P + q)xE+, 

and gives, as in 2.1.2, 

with K = k j i ,  and 

@t - x; = (1 - K x y x :  0- 

$0 being uniquely determined by 

y = px; = & l +  KG$. 
P 

Although an equilibrium solution exists, it is easily seen that there is no exact time- 
dependent solution in the form of a geometrical series, similar to the solution (5) of case A 
described in 2.1.1. However, we will now study an approximation which assumes that the 
polymer distribution remains nearly a geometric series all the time. 
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2.3.2. Approximate solution. A simple approximation, if the dispersion of the size of the 
polymers is low, consists of assuming that the relation 

(PZ) - (AZ = ( P K ( P )  - 1) 

which holds at time 0 (if there are only monomers initially) and at f = CO, is always 
approximatively verified. Thus 

or 

Then equation (32) becomes 

the solution of which (if &(O) = y )  is given by 

$0 - 4+ 
Y -@+ Y - 4 -  C 

% Y I  
40 - 4- @+In - -@-In - = -- 

with 

i c  
c = [ ( 4  + 4y)]”z 4* = -- 2k f - 2 . 

(35) 

It can be shown that y > @+ > 0 > @-, and that (35) has a unique solution @,,(I) > @+ 
for all I > 0. When I + CO, $0 + @+, which is the equilibrium value calculated in 2.3.1. 
It is seen that $0 tends to @+ as exp(-g- t ) .  

Once is estimated, all X p  can be calculated successively from (29), using the method 
of section 2.1.2. 

The result of this approximation for X I  is compared to the numerical solution of the 
kinetic equations in figure 1, curve C. It is seen that the approximation is quite accurate. 

3. Numerical method 

Equation (2) is a set of coupled nonlinear first-order differential equations. We used the 
Euler method to solve this set of equaiions, cut by setting the limit to the maximum value 
q of the cluster X , .  This qmox was usually taken as 100; the results are not affected by this 
choice of relatively small system size, as we checked it by comparing with the numerical 
data produced by a higher value of qmox. So, we follow the evolution of the population 
Xk(t) with an initial distribution of 100 monomers. For simplicity we take k = k = 1. The 
time step was taken so as to ensure that the results were independent of that step. We also 
calculated the zero and first moments, 
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t 

Figure 1. Monomer cancenmtion values X l ( r )  as a function of time for the different kernel 
combinations indicated as A, B. C and D in table 1. The full circles are the results from the 
approximation used in example C. Note that the numerical and malytical results for use C lie 
on top of each other. 

which are the total number of clusters and the total mass. M I  is conserved with time and 
this constancy was a check for OUI calculations. 

As is shown in [SI two basic models of the nary-Stockmayer theory of polymerization 
can be described in terms of rate equations with the following coagulation rates: Ki, - 
1, K 3 j  - (i  + j ) .  So, we used them as the aggregation kernels and choose those listed in 
table 1 for the fragmentation kernels. Cases A, B and C are the same as we dealt with in 
the previous section and checking them numerically indicated to us that the approximations 
were good enough. Case D is the inverse of example B, that is, constant coagulation and 
additive fragmentation. It is possible to write an equation as (21) for every X , ,  but the 
equations for the m6nomers and 60 are 

Table 1. Aggregation and fmgmenlalion kernels. 

A I I 
B (i + j )  1 
C (it j )  (i + A  
D I i + j  

4. Results 
Figure 1 displays the approach to equilibrium of Xl( t )  for the different kernel combinations. 
In all cases X I  ( t )  decays monotonically with time from CO at t = 0, since larger aggregates 
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are formed at the expenses of primary particles. As can be seen, the asymptotic value for 
cases A (constant aggregation and fragmentation kernels) and C (additive aggregation and 
constant kernels) is the same. The reason for this can be seen from (8). where equality of 
the aggregation and fragmentation kernels results in (9). But the initial decrease is different 
for every case. In fact the decrease for case C, whose kernels are area-dependent, is less 
steep than for case A whose kernels are constant. This same figure also shows that the 
approximation used in 2.3.2 (example C) is very accurate (plotted with full circles). 

The asymptotic value for case B is different. For a comparison, from (27) we obtain the 
asymptotic value for XI - 0.14285, while the numeric value is 0.14293. The mechanism 
for case D implies the conservation of a larger number of monomers at equilibrium. Using 
the equations for XI and $0 given above we also obtain a very accurate result, compared 
with the numerical solution. So, in this case the asymptotic value is XI - 0.57172, while 
the numeric value is XI - 0.57348. 

At the same time the number of higher-order particles, which is zero at the beginning, 
increases at the expenses of the lower-order particles. For mechanisms B and C the number 
of dimers reaches a maximum, after which it begins to decrease owing to the formation 
of particles of a still higher order (see figure 2). This maximum is attained at (arbitrary 
units) time 8600 for case A and at time 2000 for case B. For cases C and D there is no 
maximum. The occurrence of a maximum for the evolution of the different k-mers depends 
only of the chosen values for k and h. So, for the special choice k = 1 = 1 we see from 
(5) that the condition for a maximum is a c 2, which is fulfilled only for dimers but not 
for higher-order-mers. Instead, if we choose k = 1,z + 2 and a = 0.222 which fulfils 
the condition a < f valid for six-mers. Now, from figure 2 we also see that the number 
of dimers at equilibrium is greater for mechanism D and less for mechanism B. So this 
last mechanism is less able to preserve dimers and favours the formation of trimers and 
tetramers, as can be seen in figures 3 and 4, respectively. 

Finally, figure 5 shows the average ( p )  as a function of time. Note that for case B this 
value reaches the limit given by (20). 

0.18 

0.16 

0.14 

0.12 

x2 . 

0.10 

0.08 

0 . a ~  

0.04 

0.02 

0.W 
0 5000 10000 15000 20000 25000 30000 

t 

Figure 2. Dimer concenmtion values XI(?) as a function of time for the different kemel 
combinations of table I .  



2992 A4 E Costas ef a1 

0.06 

0.05 

n.w 

0.03 

0.02 

0.01 
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0 5000 lOW0 15000 20000 25000 30000 

t 

Figure 3. Trimer concentration values X,(r)  as a function of time for the different kernel 
combinations of table 1 

t 

Figure 4. Tetramer concentration values X 4 ( t )  JS a function of time for the different kernel 
combinations of table 1. 

5. Conclusions 

In conclusion, the technique of the generating function can be applied to solve analytically 
the Smoluchowski rate equation including both aggregation and fragmentation, which we 
have exemplified in three cases. In the well known case A, the kernel is constant and 
the generating function allows us to obtain the complete solution to the problem. ?he 
technique applied to case B, additive coagulation kernel and constant fragmentation kernel, 
allows us to obtain only the solution for the total number of panicles. When applied to more 
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2993 

00 

Figure 5. Average value ( p )  as B function of time for the differen1 kemel combinations of 
rable 1. 

complicated kernels, for example, with the fragmentation size-dependent, the method allows 
us to obtain solutions for k ( t )  provided an assumption is made on the second moment. 
In cases B and C. it is then possible to solve successively the evolution equations of the 
system. 

Numerical results for the foregoing kemels plus case D were also found. The result is 
that cases A and C give the same asymptotic behaviour but differ in the initial growing. 
In these cases the condition of detailed balance is satisfied and a true stationary solution 
exists. With respect to cases B and D they give different equilibrium values for the k-mers 
and also show a different time evolution. They illustrate the role of the assumptions on the 
kinetic coefficients, and comparing with experimental results could give insight about the 
true mechanism of evolution for rapid coagulation. 

It would naturally be interesting to extend the present analysis by taking into account the 
diffusion of polymers [19]. In this case the diffusion constants are likely to decrease with 
the size of the polymers. This should lead to a competition between reaction and diffusion 
and probably to non-classical time behaviour. Work in this direction is in progress. 
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